Installations and License file

Installation

- 1. Plug in the usb jump drive into your computer or download the esdc.zip file
- 2. Go to the esdc folder
- 3. Currently, FluSol can only run under Windows 10 and up 64-bit operational systems
- 4. Flusol will only output or convert flusol result file formats corresponding to third party post-processing software input format.
- 5. The GUI driven pannel can also be used to convert Flusol file format into third party input file formats.
- 6. Flusol does not modify any third parties' program.
- 7. To run under the GUI driven display, click the "setup.bat" file, the GUI window will pop up. The GUI window is good for mesh generation and post processing
- 8. To run under the command mode (DOS Prompt), first type "command_line" to setup the environment variables. Then go to examples under gas.vrf. After user types flusol, the ropgram will prompt 1, 2, 3, 4 ... for files with .da and .msh extension. User only need to enter the corresponding number, then the program will run with the file labelled by the number. If the input file is .msh file, then after finishing, the program will generate geo.* file which is a CFD model file. And user can rename it into 3d.da, 2d.da or any .da file. Then the next time use can type "flusol", and with the .da file as input to solve the problems.
- 9. To generate flusol mesh, run solver, you can type "Flusol" and follow the program directions
- 10. The procedure is as following: .cbk (collection of many mesh generation scripts) → .msh (integrated mesh generation scripts) → .da file (CFD model) → run Flusol → .pos → run gmsh → result plots

30 Days Limited time License file

30 days limited license will be released on October 29 and 30, 2025.

User can also send a request license email to

cfdrocket@gmail.com

with subject: License.

And we will email back a free 30 days license file for you.

At the same time user can download the updated <u>esdc.zip</u> file. The new <u>esdc.zip</u> file corrects the GUI error for <u>user define wing cross-sections</u> (or example f22_user_input_wing_profile) and input data files for chemical reacting flow examples g1 to g6. And how to run the chemical reaction flow.